おはようございます、タナイです。



力の単位をNでならった世代にとってkgfはなじみがなさ過ぎてどうもピンとこない!
ひどいときはkgfのところをkgって書いてあったりしてますます単位系の混同を招くしなあ……
私より年配層だとNのほうが新参者という印象でしょうが、世界はもうNの時代です。
とはいえ古い文献なんかだとレガシー単位のkgfが出てきて混乱するので今日はkgfをスッキリ理解しましょう。
プログラミングなどで生活のITソリューションを図るのもモチロンよし。しかし世の中のベースを支配しているのは古典力学です。つまり原理原則。
ちゃんと押さえておくと必ず役に立ちます。
力の単位と質量の単位
いきなり結論から言っちゃいますが、kgfは力の単位です。
人間は見た目に惑わされやすいので、名前にkgとか入ってるとどうしても質量の単位と混同するんですよね。
質量は単位kg、力(重量)はkg・m/s2なので次元が違う概念です。
最初からNで習う世代も「昔はkgfという単位があってだな……」とかいう話は確実にされていると思うので、力の単位だということは知っているはずなんです。
ですが、kgfを力の単位として扱った経験が圧倒的に乏しいので、



ウッ……慣れていない単位だ。脳みそが理解を拒否してくる。
という感じで思考停止しちゃうんですよね。
だから冷静に考えれば分かるはずのことも分からなくなってしまいます。
無理矢理でも脳に認識させてあげるのが大事です。kgfは単なる力の単位だということを声に出して10回くらい唱えてしまいましょう。
kg/mm2とかいうクソみたいな単位
力の単位がNなら、それを面積で割った圧力の単位はPaです。
最悪なことに、kgfとNのみならず、圧力を表すのに力の部分をkgと表記するアホみたいな表記が昔ははびこっていました。
それの代表パターンがkg/mm2とkgf/mm2です。



次元が違うのに単位系を分けて管理してないってアホ過ぎない?
まあ、実際アホすぎてNなどSI単位系が使われるようになりました。
ちなみに表記は違いますがkg/mm2とkgf/mm2は同じ意味です。最低ですね。
次元解析で人生の7割くらいなんとかなる
多くの人が物理を苦手になる原因として次元を理解できていないというのがあると思います。
もう、受験だろうが設計だろうが次元を理解するだけで人生7割くらい解決します。
それをやるのが「次元解析」です。
私としてはこれ、小学校くらいからやるべきだと思うんですよね。



次元解析を小学校からやれば掛け算の順序とかいうオランウータン並みの教育も撲滅できるのでは
ものすごく乱暴にいうと、次元解析で何をするかといえば「式の左右で単位の数を合わせろ」ってだけです。
簡単な例で行きましょう。
水の上に浮かぶ面積100cm2の変形しない板の上に質量20kgのおもりが載っている。板と水面の間に働く圧力を求めよ。
圧力はP=F/S、すなわち力を面積で割った単位です。そして力はF=maなので質量と加速度を掛けた単位です。
求めたいPを左辺において単位を合わせます。
P=F/S=ma/Sで、算出には質量と加速度と面積が必要なことがわかる。
問題文に出てきている単位はそれぞれ、質量がkg、面積がcm2です。Pをもとめるには加速度が足りないことが分かり、重力加速度9.8m/s2を使うこともおのずと分かります。
単位系の統一という聖域サンクチュアリへ
世の中の規格統一は実現しません。
統一したほうがいいと思っていても、ローカルな使い方に限定すればもっと最適化できたり、利権が絡んだりして、まあ現実的に無理でしょう。
なので、せめて個人の脳みその中では統一しておきましょう。
日常で目にする単位はすべて国際標準のSI単位系で表すと何に相当するのかということを常に押さえておくことが重要です。その際に次元解析を用いてちゃんと次元を押さえましょう。
国際単位系はたった7つです。よく聞く複合単位をSI単位系に直してみるだけでも次元解析の練習になるのでオススメです。



コメント